论文部分内容阅读
针对窃电行为现场查证具有难以克服的现实困难,提出一种基于离群数据挖掘的窃电行为检测方法。该离群算法基于密度聚类算法,采用基于用电量波动的不同方向识别不同的用电模式,基于用电频率、离群距离以及异常规则关联度的计算挖掘潜在离群数据点,并通过基于评价矩阵确定离群阈值对离群数据点存在窃电行为的可能性进行确定性分析,实现对窃电行为的数据化检测。最后通过仿真测试证明该算法在针对混杂不同用电模式的用电数据的窃电检测方面相对于其他数据挖掘算法具有更好的性能表现。