论文部分内容阅读
针对传统粒子滤波目标跟踪算法中用先验转移概率作分布函数时计算量大、粒子退化严重且未考虑最新观察信息等缺点,提出了一种Camshift优化的粒子滤波跟踪算法。算法首先在粒子滤波框架下,利用Camshift算法使粒子向目标状态的最大后验核密度估计方向移动。然后针对目标所处环境的不同,提出了适时调整参与Camshift算法优化的粒子数的方法,既考虑了跟踪算法的效率又考虑了粒子的多样性。跟踪结果表明,该算法的跟踪性能明显优于传统的粒子滤波算法,具有很好的实时性和鲁棒性。