论文部分内容阅读
Vapor diffusion experiments with different thicknesses of oil barriers are observed by a real-time optical diagnostic system consisting of a Mach Zehnder interferometer,a microscope and an image processor.Spatiotemporal analysis is first employed to extract the absolute concentration evolution and supersaturation during the entire crystallization process.The nucleation and crystal growth processes are then analyzed.It is found that the crystallization process can be easily classified into four stages in our experiments,according to the analysis of interferograms and the absolute concentration curve.This can help us understand the details of crystal growth.The rule of quality change of crystals with increasing thickness of oil barriers is also analyzed,and could be interpreted by the absolute concentration variation and crystallization phase diagram.The growth of large crystals with a high degree of perfection is essential in the chemical industry and the protein field.Vapor diffusion[1] is the most widely used technique in protein crystallization,the principle of which is that the solution gradually reaches saturation and then starts to crystallize through diffusion or evaporation.It is a challenge to know the precise status of nucleation and supersaturation evolution in vapor diffusion experiments[2] because they are affected by both water vaporization and crystal growth.Vapor diffusion also suffers from a common problem,i.e.