论文部分内容阅读
针对古代壁画由于历史风化出现不同程度起甲、脱落等问题,提出一种增强一致性生成对抗网络的算法修补壁画缺失区域.该算法以生成对抗网络为框架,首先在卷积层提取深层的图像特征信息,经过反卷积将特征映射到原图像大小的图像空间,并输出修复的图像;然后在判别网络中使用全局判别网络和局部判别网络,增强已修复壁画图像的在整体和补全区域表现的一致性;最后在生成网络中引入空洞卷积增大卷积核感受野,增加网络层数并加入残差模块来获取更丰富的图像特征,卷积层使用批标准化加快建模周期等在细节方面对网络进一步优化,判别网络中也增加