论文部分内容阅读
针对复杂背景的彩色图像中复杂姿态人脸的检测问题提出了一种基于多分类器融合的人脸检测方法。首先使用AdaBoost层叠式算法分别训练正面人脸分类器和侧面人脸分类器,将正面人脸检测结果和侧面人脸检测结果相融合得出可能包含人脸的候选区域,然后使用YCbCr空间的肤色统计模型在这些候选区域中进一步验证人脸。该算法既利用了不同姿态人脸分类器的信息融合,又利用了人脸灰度纹理特征和人脸肤色信息的融合,对人脸姿态和图像背景有较强的鲁棒性,而且处理速度很快。实验结果表明,方法可以有效提高对复杂姿态人脸的检测概率,并显