论文部分内容阅读
针对一类同时含未知时变和未知定常参数、并带有可重复时变干扰的不确定机械臂系统,为精确跟踪期望轨迹并加快跟踪误差的收敛速度,提出了一种具有抗扰能力的机械臂组合自适应迭代学习控制算法.对未知定常参数和未知时变参数,分别采用时域和迭代域的参数自适应迭代学习律,并基于估计参数设计了机械臂的自适应迭代学习轨迹跟踪控制律.利用相似李亚普诺夫函数证明了轨迹跟踪误差的收敛性.针对二自由度关节式机械臂的仿真结果表明,应用所提算法可实现精确的轨迹跟踪,并加快迭代学习的收敛速度.
In order to accurately track the desired trajectory and speed up the convergence of tracking error, aiming at a class of uncertain manipulator system with unknown time-varying and unknown parameters with repetitive and time-varying disturbance, The adaptive iterative learning control algorithm for manipulator combination is proposed.The parameter adaptive iterative learning law in time domain and iteration domain are respectively used for unknown constant parameters and unknown time-varying parameters. Based on the estimated parameters, adaptive iterative learning trajectory tracking Control law.The convergence of trajectory tracking error is proved by the Lyapunov function.The simulation results of the two-degree-of-freedom articulated manipulator show that the proposed algorithm can achieve accurate trajectory tracking and accelerate the convergence of iterative learning.