【摘 要】
:
【目的】旨在讨论相同强度储备裕度条件下耐压船体与耐压液舱极限承载能力的关系,获得二者极限承载能力相当的匹配设计。【方法】为此,以典型的外置式耐压液舱为研究对象,在评估耐压液舱初始结构方案稳定性与极限承载能力的基础上,分析液舱壳板厚度、液舱实肋板厚度及液舱横舱壁结构对耐压液舱极限承载能力的影响。随后对初始方案进行适当调整,获得耐压船体及耐压液舱强度储备裕度相当的设计方案,并在此基础上讨论耐压船体与耐
论文部分内容阅读
【目的】旨在讨论相同强度储备裕度条件下耐压船体与耐压液舱极限承载能力的关系,获得二者极限承载能力相当的匹配设计。【方法】为此,以典型的外置式耐压液舱为研究对象,在评估耐压液舱初始结构方案稳定性与极限承载能力的基础上,分析液舱壳板厚度、液舱实肋板厚度及液舱横舱壁结构对耐压液舱极限承载能力的影响。随后对初始方案进行适当调整,获得耐压船体及耐压液舱强度储备裕度相当的设计方案,并在此基础上讨论耐压船体与耐压液舱极限承载能力的关系,进一步加强耐压船体获得匹配耐压液舱与耐压船体承载能力的方案及其对应的强度裕度。【结果】结果表明,减薄液舱壳板30%、液舱实肋板33.3%及液舱横舱壁30%,其极限承载能力分别降低了16.5%,36.4%及0.17%。【结论】进一步分析表明:在相当强度储备裕度的条件下,耐压船体的承载能力要远低于耐压液舱的承载能力;在耐压液舱壳板的强度储备裕度为25%左右、耐压船体壳板的强度储备裕度为40%左右时,耐压船体与耐压液舱的极限承载力大致相同。
其他文献
免疫疾病,例如癌症,本质上是一种复杂系统行为。近年来兴起的系统生物学是一种尝试在系统水平上理解其复杂行为的学科。系统生物学的基本方法分为两种,一种是“自上向下”的研究侧重对实验数据的整合分析与规律整理。而另一种是“自下而上”的方法以分子自身的特征构建模型,从而推测系统的行为。实验上,DNA与RNA深度测序、质谱蛋白质组学和代谢组学等新兴技术、统计方法的整合分析让人们得以一窥人体细胞内复杂系统的诸多
环形势中玻色-爱因斯坦凝聚的实验实现,使得对该系统的研究成为超冷原子领域的热点方向之一。环形势特殊的几何结构和玻色-爱因斯坦凝聚的参数精准可控优势的结合,为人们研究超流、迟滞和原子器件等提供了优秀的量子模拟平台。然而,玻色-爱因斯坦凝聚中原子的电中性限制了人们利用其模拟凝聚态物理中和电荷相关的物理现象。人工规范场理论的提出及在玻色-爱因斯坦凝聚系统中的实验实现打破了这种局限性。光与原子的相互作用,
非线性能量汇(Nonlinear energy sink,NES)以其能量定向传递机制和共振捕获特性在振动控制方面有出色表现。然而,由于NES不包含线性刚度,NES的振幅可能会较大,可能造成结构不稳定,阻碍了NES的工程应用。因此,需要对NES的振动进行控制。本文设计了几类限位策略,以控制NES的振动幅度,借助智能优化算法设计限幅型非线性减振器的参数,在增强结构可靠性的同时,提升减振器的减振性能。
水系超级电容器作为先进电化学储能技术之一,具有快速充放电、长循环寿命及高功率密度等性能,近年来已得到快速的发展。但水系电解液凝固点较高和沸点较低的本性限制了其在低温和高温环境下的使用。而研发耐低温和耐高温的超级电容器已成了目前的热点领域。为达目的,需要同时研发出耐低温和耐高温的高性能电极材料和电解液。基于对廉价NaCl物理化学性质的理解及其对电解液及电极材料微观结构的调节性能,本论文开发了耐低温和
大环主体分子是超分子化学的研究基础和超分子材料的构筑基元,在超分子化学的诞生和发展过程中占据不可或缺的地位。作为家喻户晓的明星主体分子,冠醚、杯芳烃、环糊精、葫芦脲和柱芳烃等具有良好的拓扑结构、独特的主客体性质等优点。基于这些明星大环及其衍生物构筑的功能材料被广泛的应用于生物医药和材料科学等前沿领域。然而,他们仍然面临着一些新的挑战,例如大环骨架的功能多样性亟需拓展;功能大环的结构与性能之间的深入
基于“1+X”的群文阅读教学策略研究,应当从单一议题入手,组合与该议题相关的多个文本,促进阅读结构更加完整,串联学生的单篇阅读思维,更好地指导学生探究文本。文章分析了统编版《义务教育教科书语文》(六年级下册)第一单元教材结构,结合实际教学案例研究小学语文“1+X”群文阅读教学策略,旨在改善传统的阅读教学格局,有效激发学生的阅读学习兴趣。
本篇论文主要学习了系统性处理非线性可积偏微分方程初边值问题的一系列方法与概念,包括使用反散射方法求解非线性薛定谔方程并得到多孤子解;Sklyanin的可积边界理论以及该理论在带边界的非线性薛定谔方程上的应用;和使用边界穿衣方法求解半直线上带边界非线性薛定谔方程的孤子解.在此基础上,我们将可积边界理论和非线性薛定谔方程族的概念相结合,利用非线性薛定谔方程族的递推算子推导出高阶非线性薛定谔方程的可积边
精确和高效的量子调控技术对量子测量、量子模拟和量子计算等领域的发展都起到了至关重要的作用。量子绝热捷径技术作为最广为人知的量子调控技术之一,其理论和实验上的发展也初具规模。然而,该技术的局限性如需要系统的可解析性,使得其无法很好的处理含相互作用和噪声的复杂量子系统。为此,本文一方面提出变分量子调控和基于机器学习的方法,分别实现了相互作用的玻色气体和随机势中的冷原子系统的高效操控。另一方面,为了探索
随着信息技术的不断发展,由于对高密度、低功耗、小型化和多功能化信息存储器的要求越来越高,人们开始关注大量具有多种物理性能的功能材料。磁电多铁材料是一类具有磁性和铁电性的多铁性材料,能够实现磁场对电极化调控或电场对磁化强度的调控。目前,多数磁电多铁材料的磁电耦合效应一般发生在较高的磁场或较低的温度,且磁电耦合系数较小,严重限制了磁电多铁材料的实际应用。因此,寻求高温(室温及以上)、低磁场和较大磁电耦
随着物联网(Internet of Things,IoT)技术的迅猛发展,越来越多的移动设备需要运行计算密集型任务并接入互联网。然而,由于移动设备通常仅具有有限的电池工作寿命和计算资源,从而导致其无法胜任计算密集型任务的处理工作。如何解决设备终端资源受限与日益复杂的应用服务之间的矛盾已成为通信和互联网领域亟需面临的挑战。受到云计算、雾计算等服务计算框架的启发,一种新型的计算范式——移动边缘计算(M