论文部分内容阅读
现有的大多数利用知识图谱的推荐算法在探索用户的潜在偏好时没有有效解决知识图谱中存在的不相关实体的问题,导致推荐结果准确率不高。针对这一问题,提出了基于知识图谱和图注意网络的推荐算法KG-GAT(knowledge graph and graph attention network)。该算法将知识图谱作为辅助信息,在图注意网络中使用分层注意力机制嵌入与实体相关的近邻实体的信息来重新定义实体的嵌入,得到更有效的用户和项目的潜在表示,生成更精确的top-N推荐列表,并带来了可解释性。最后利用两个公开数据集