论文部分内容阅读
在传统分段式数据流聚类算法中,在线部分中的微簇阈值半径T取值不精确以及离线部分对微聚类的处理相对简单,导致了聚类质量不高.针对这一缺点,在现有动态滑动窗口模型基础上,提出了一种针对离线部分处理的基于人工蜂群优化的数据流聚类算法.该算法包括两部分:(1)在线部分根据数据在窗口内停留的时间长短来动态调整窗口的大小和改进微簇阈值半径T的取值,逐步得到微簇集.(2)离线部分利用改进的蜂群算法不断动态调整来求出最优聚类结果.实验结果证明,本文算法不但有较高的聚类质量,而且有较好的延展性和稳定性.