改进的基于模糊C-均值聚类的图像分割算法

来源 :哈尔滨商业大学学报(自然科学版) | 被引量 : 0次 | 上传用户:kjnojn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前的FCM类型的算法聚类数目的确定需要聚类原形参数的先验知识,否则算法就会产生误导.为了提高图像分割算法的抗噪性能,用K均值聚类算法简单、快速的优点对模糊C均值聚类算法进行改进.结合图像的邻域信息,对图像的直方图作均衡化处理,改善图像质量,通过自适应滤波,降低噪声对分割效果的影响.先用K均值聚类算法对图像进行分割,快速的获得较为准确的聚类中心和初次分割图像,避免了FCM算法中初始聚类中心选择不当造成的死点问题.用邻域灰度均值信息代替传统模糊C均值聚类算法中的灰度信息,对K均值聚类得到的图像作二次分
其他文献
尽管第一代互联网为美国以及世界经济、社会乃至军事带来的神话还在继续着,但是,有着无穷尽的IP地址,网络速度比现在提高1000倍,网络安全可控制的下一代互联网早已经成为全球