论文部分内容阅读
提出了基于分离程度的SVM决策树的焊缝缺陷分类识别方法.首先对X射线焊缝图像进行缺陷特征提取,然后结合聚类的思想,定义了分离程度,每次将分离程度最大的缺陷类分离出来,成功解决了传统欧氏距离不能处理的类交叉分类情况,得到了累积误差更小的决策树.将基于分离程度的二叉树的多类SVM算法运用于X射线焊接缺陷图像的分类识别,通过计算机仿真,表明该方法比其它SVM多分类算法在分类精度和识别效果方面有明显的提高.