论文部分内容阅读
针对如何有效地缩小不同受试者脑电信号之间的波动和差异,提高分类精度的问题,提出一种多特征提取算法用于脑电情感识别.首先,采用数据空间自适应算法对脑电信号数据进行空间线性变换,使目标空间与源空间之间的差异最小化.再采用共空间模式将数据空间自适应变换后的信号变换到一个最优子空间,使两类之间的方差差异最大,将共空间模式处理后的数据作为数据空间自适应算法的输入数据,反复迭代多次.然后提取功率谱能量特征和小波包能量特征,最后采用Bagging tree、SVM、线性判别分析和贝叶斯线性判别分析进行情感分类.实验结果