论文部分内容阅读
提出了一种基于跨模式特征深度学习的RGB-D视频目标跟踪算法。构建跨模式稀疏去噪自编码器深度学习网络,提取RGB-D视频数据中样本的跨模式特征。将样本的跨模式特征输入到逻辑回归分类器中,获得置信分数,利用逻辑回归分类器的输出来构建观测似然模型。通过粒子滤波算法来实现RGB-D视频数据中的目标跟踪。实验结果表明,提出的视频目标跟踪算法对遮挡、旋转、光照变化等具有较强的鲁棒性,能够稳定的跟踪目标,具有较高的成功率。