论文部分内容阅读
针对推荐系统中的评分预测问题,在矩阵分解的基础上实现了一种修正的二项矩阵分解算法。假设用户对物品的评分基于二项分布,由于用户的评分习惯存在差异,物品的受欢迎程度也存在差异,导致用户—物品评分矩阵存在偏置量。通过引入偏置量对矩阵分解和评分预测进行修正,采用最大后验估计建模,并通过随机梯度下降算法优化模型。实验结果表明,在MovieLens 100K数据集上,引入评分偏置的二项矩阵分解算法在推荐精度、离线计算时间等方面均优于传统的二项矩阵分解算法。