群体药代动力学软件对万古霉素稳态谷浓度的预测能力分析

来源 :中华危重病急救医学 | 被引量 : 0次 | 上传用户:c410504
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的:验证群体药代动力学软件JPKD-vancomycin对万古霉素稳态谷浓度的预测能力,并分析影响JPKD-vancomycin软件预测能力的因素。方法:收集2013年7月至2018年12月在南京医科大学附属苏州医院应用万古霉素抗感染治疗并同时进行血药浓度监测(TDM)的住院患者的临床资料。所有患者参考万古霉素用药指南制定经验性给药方案(初始方案),于首次给药48 h后及下一剂给药前0.5 h测定万古霉素稳态谷浓度,稳态谷浓度不达标者按谷浓度值制定个体化调整给药方案(调整方案),调整给药48 h后再次测定万古霉素稳态谷浓度;万古霉素的目标浓度为10~20 mg/L。收集患者临床信息,根据经典药代动力学软件Vancomycin Calculator测算结果,应用JPKD-vancomycin软件测算万古霉素初始方案并预测稳态谷浓度;再采用JPKD-vancomycin软件调整万古霉素给药方案并预测调整方案后的稳态谷浓度。采用万古霉素预测稳态谷浓度(Cn 预)与实测稳态谷浓度(Cn 实)的权重偏差(WRES)评估JPKD-vancomycin软件对万古霉素稳态谷浓度的预测能力。根据WRES将初始方案TDM数据分为预测准确组(WRES<30%)与预测不准确组(WRES≥30%),记录两组患者的性别、年龄、体重、身高、住院时间、合并症、应用血管活性药物、机械通气、吸烟史、是否术后、是否产科、是否创伤等指标以及实验室检查、万古霉素用药情况和TDM结果。采用单因素和多因素Logistic回归分析筛选影响JPKD-vancomycin软件预测万古霉素稳态谷浓度的因素,并绘制受试者工作特征曲线(ROC)以评价影响因素的评估价值。n 结果:共纳入310例患者,收集万古霉素TDM数据467例次,其中初始方案310例次,调整方案157例次。与初始方案相比,根据初始Cn 实调整方案后的WRES显著减小〔14.84(6.05,22.89)%比20.41(11.06,45.76)%,n P<0.01〕,WRES<30%的比例显著升高〔82.80%(130/157)比63.87%(198/310),n P<0.01〕,提示JPKD-vancomycin软件预测调整方案万古霉素稳态谷浓度的准确性优于对初始方案稳态谷浓度的预测。预测准确组198例次,预测不准确组112例次;单因素Logistic回归分析结果显示,女性〔优势比(n OR)=0.466,95%可信区间(95%n CI)为0.290~0.746,n P=0.002〕、体重轻(n OR=0.974,95%n CI为0.953~0.996,n P=0.022)、身高矮(n OR=0.963,95%n CI为0.935~0.992,n P=0.014)、万古霉素清除率(CLn Van)低(n OR<0.001,95%n CI为0.000~0.231,n P=0.023)和术后患者(n OR=1.695,95%n CI为1.063~2.702,n P=0.027)是影响JPKD-vancomycin软件预测能力的相关因素;多因素Logistic回归分析显示,女性(n OR=0.449,95%n CI为0.205~0.986,n P=0.046)、CLn Van低(n OR<0.001,95%n CI为0.000~0.081,n P=0.015)和术后患者(n OR=2.493,95%n CI为1.455~4.272,n P=0.001)是JPKD-vancomycin软件预测不准确的独立危险因素。ROC曲线分析显示,CLn Van评估JPKD-vancomycin软件预测万古霉素稳态谷浓度准确性的ROC曲线下面积(AUC)为0.571,当CLn Van低于0.065 L·hn -1·kgn -1时,敏感度为56.3%,特异度为57.1%,说明JPKD-vancomycin软件预测万古霉素稳态谷浓度不准确的风险增加。n 结论:JPKD-vancomycin软件对万古霉素调整给药方案后稳态谷浓度的预测能力较初始方案稳态谷浓度更高;JPKD-vancomycin软件对女性、CLn Van低和术后患者万古霉素稳态谷浓度的预测能力较差,尤其是CLn Van低于0.065 L·hn -1·kgn -1时,预测不准确的风险增加。n “,”Objective:To estimate the predictive performance of the population pharmacokinetics software JPKD-vancomycin on predicting the vancomycin steady-state trough concentration, and to analyze the related factors affecting the predictive performance.Methods:The clinical data of patients who were treated with vancomycin and received therapeutic drug monitoring (TDM) admitted to Suzhou Hospital Affiliated to Nanjing Medical University from July 2013 to December 2018 were enrolled. All patients were designed an empirical vancomycin regimen (initial regimen) according to vancomycin medication guidelines. Steady-state trough concentrations of vancomycin were determined at 48 hours after the first dose and 0.5 hour before the next dose. Dosage regimen was adjusted when steady-state trough concentration was not in 10-20 mg/L (adjustment regimen), and then the steady-state trough concentration was determined again 48 hours after adjustment. First, the JPKD-vancomycin software was used to calculate the initial regimen and predict the steady-state trough concentration according to the results calculated by classic pharmacokinetic software Vancomycin Calculator. Second, the JPKD-vancomycin software was used to adjust the vancomycin dosage regime and predict the steady-state trough concentration of adjustment regimen. The weight residual (WRES) between the predicted steady-state trough concentration (Cn pre) and the measured steady-state trough concentration (Cn real) was used to evaluate the ability of the JPKD-vancomycin software for predicting the vancomycin steady-state trough concentration. The TDM results of initial regimen were divided into accurate prediction group (WRES < 30%) and the inaccurate prediction group (WRES ≥ 30%) according to the WRES value. Patient and disease characteristics including gender, age, weight, height, the length of hospital stay, comorbidities, vasoactive agent, mechanical ventilation, smoking history, postoperative, obstetric patients, trauma, laboratory indicators, vancomycin therapy and TDM results were collected from electronic medical records. Univariate and multivariate Logistic regression analysis was used to screen the related factors that influence the predictive performance of JPKD-vancomycin software, and the receiver operating characteristic (ROC) curve was drawn to evaluate its predictive value.n Results:A total of 310 patients were enrolled, and 467 steady-state trough concentrations of vancomycin were collected, including 310 concentrations of initial regimen and 157 concentrations of adjustment regimen. Compared with the initial regimen, the WRES of adjusted regimen was significantly reduced [14.84 (6.05, 22.89)% vs. 20.41 (11.06, 45.76)%, n P < 0.01], and the proportion of WRES < 30% increased significantly [82.80% (130/157) vs. 63.87% (198/310), n P < 0.01]. These results indicated that JPKD-vancomycin software had a better accuracy prediction for steady-state trough concentration of the adjusted regimen than the initial regimen. There were 198 concentrations in the accurate prediction group and 112 in the inaccurate prediction group. Univariate Logistic regression analysis showed that women [odds ratio ( n OR) = 0.466, 95% confidence interval (95%n CI) was 0.290-0.746, n P = 0.002], low body weight (n OR = 0.974, 95%n CI was 0.953-0.996, n P = 0.022), short height (n OR = 0.963, 95%n CI was 0.935-0.992, n P = 0.014), low vancomycin clearance (CLn Van; n OR < 0.001, 95% n CI was 0.000-0.231, n P = 0.023) and postoperative patients (n OR = 1.695, 95%n CI was 1.063-2.702, n P = 0.027) were related factors affecting the predictive performance of JPKD-vancomycin software. Multivariate Logistic regression analysis indicated that women (n OR = 0.449, 95%n CI was 0.205-0.986, n P = 0.046), low CLn Van (n OR < 0.001, 95% n CI was 0.000-0.081, n P = 0.015) and postoperative patients (n OR = 2.493, 95%n CI was 1.455-4.272, n P = 0.001) were independent risk factors for inaccurate prediction of JPKD-vancomycin software. The ROC analysis indicated that the area under ROC curve (AUC) of the CLn Van for evaluating the accuracy of JPKD-vancomycin software in predicting vancomycin steady-state trough concentration was 0.571, the sensitivity was 56.3%, and the specificity was 57.1%. The predictive performance of JPKD-vancomycin software was decreased when CLn Van was lower than 0.065 L·hn -1·kgn -1.n Conclusions:JPKD-vancomycin software had a better predictive performance for the vancomycin steady-state trough concentrations of adjustment regimen than initial regimen. JPKD-vancomycin software had a poor predictive performance when the patient was female, having low CLn Van, and was postoperative. The predictive performance of JPKD-vancomycin software was decreased when CLn Van was lower than 0.065 L·hn -1·kgn -1.n
其他文献
本文提出了一种基于动态伪装的正则组统计隐写分析方法.该方法利用待检测图像中正则组的统计量建立方程来估计信息嵌入的比率,同时采用动态选取伪装的策略尽可能消除图像初始
目的 建立珍母丸的质量标准.方法 采用显微鉴别方法对枸杞子、珍珠母的显微鉴别进行描述,采用薄层色谱法对香附、山茱萸、赤芍进行定性鉴别;采用HPLC测定赤芍中芍药苷的含量,
本文提出一种新的混沌优化算法用于解决图像识别中的特征点匹配问题.该算法利用混沌搜索的方法得到新的合法解,充分利用了混沌的随机性和遍历性等特点来改善寻优效率.通过设
会议
目的 探讨脾多肽注射液增加胃癌大鼠脾脏免疫杀伤细胞活性的机制.方法 取75只大鼠,其中60只用N-甲基-N-硝基-亚硝基胍(MNNG)诱导建立大鼠胃癌模型,采用随机数表法将其分为模
本文结合数学形态学、视频图像运动分析以及聚类分析方法,提出了一种用于空中预警控制系统的小型掠地飞行器视频检测方法.首先利用目标飞行器的静态特性,运用形态滤波器在场
会议
本文在分析了现有各类矩特征特性的基础上,提出了一种基于多分辨小波分析的矩特征抽取方法,将L2(R)空间具有紧支撑的小波基函数集{ψmn(r),m,n∈Z}引入到矩特征求解,小波矩特
会议
目的 建立铁杆蒿的TLC鉴别及HPLC定量分析方法.方法 采用TLC和HPLC对采集于内蒙古通辽市5个不同地区的铁杆蒿进行定性和定量分析.TLC条件:对照品为8-羟基-6,7-二甲氧基香豆素
克隆选择算法是基于生物免疫系统的B细胞克隆选择原理提出的一种用于优化的新的进化算法.该算法模拟B细胞应对入侵抗原的方法(即对高亲和力个体克隆扩增),对扩增后的种群进行
会议
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
本文对于含有未知模型参数和噪声统计的多传感器信号系统,应用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型参数的在线辨识,提出了自校正信息融合Wiener滤波器.证
会议