论文部分内容阅读
设{X,Xn;n≥1}为i.i.d.的随机变量序列,其均值为0且EX2=1.令s={Sn}n>0为一维随机游动,其中S0=0,Sn=n∑k=1 Xk,对n≥1.定义G(n)为随机游动局部时的Cauchy主值.本文得到了,若存在某δ1>0,E|X|2r/(3p-4)+δ1<∞成立,那么对4/3<p<2及r>p,有limε→02(r-p)/2-p∞Σn=1nr-2/p{│G(n)│εn1/p}=2p/(r-p)πE│N│2(R-P)/2-P∞ΣK=O(-1)K(2/2K+1)2(R-P)/2-P+1.