论文部分内容阅读
光伏发电系统的输出功率受到季节、太阳辐射强度、温度和湿度等气象条件影响,呈现出时变性、间歇性和随机性。文章提出了基于相似日原理和改进的BP神经网络预测方法,利用光伏电站的历史气象信息建立气象特征向量,基于曼哈顿距离寻找相似日,根据给定的不同预测日选取3个相似日的输出功率作为预测模型输入,直接预测发电站的输出功率。以某光伏电站为例进行建模预测,并通过预测误差分析证明了算法的有效性。