论文部分内容阅读
针对无动态性的动作识别中易受噪声、干扰和遮挡等影响的问题,提出了一种基于稀疏表示的鲁棒的动作分类方法。对要测试的动作表示成所有训练动作的稀疏线性组合,并扩展该稀疏表示方程使其包含错误项,通过对系数和错误项的l1范数最小化算法来求解其最稀疏的表示,根据所得的稀疏解基于最小剩余量进行分类。并在Weizmann鲁棒性测试序列上进行了评价,实验结果表明该算法对噪声、干扰和部分遮挡具有较好的鲁棒性。