论文部分内容阅读
为了使平面八节点等参元的优越性在弹性力学Hamilton正则方程的半解析法得到应用。结合弹性材料修正后的Hellinger—Reissner(H—R)变分原理和二次插值函数表达平面外应力和位移函数,建立了Hamilton正则方程的八节点等参元列式。首先简要地介绍了弹性材料修正后的H—R变分原理.然后用二次插值函数表示平面外应力和位移变量,并详细地推导了Hamilton正则方程的八节点等参元列式。数值实例结果证明了本文等参元列式的正确性。