论文部分内容阅读
提出了模糊CMAC的一种基于FPGA的硬件实现方法。与其它FPGA实现的神经网络相比,包含了可以用于在线学习的权学习算法。分析了模糊CMAC的模型结构及其相应的硬件模块;用VHDL实现基于上述模块的模糊CMAC;对该模糊CMAC进行硬件综合与测试。测试结果表明:该模糊CMAC的FPGA实现方法是可行的,硬件化后的网络具有速度快、精度高、占用器件资源少的特点,是在SOPC中实现模糊CMAC模块的一种有效方法。