论文部分内容阅读
We used tropical cyclone (TC) best track data for 1949–2016, provided by the Shanghai Typhoon Institute, China Meteorological Administration (CMA-STI), and a TC size dataset (1980–2016) derived from geostationary satellite infrared images to analyze the statistical characteristics of autumn TCs over the west North Pacific (WNP). We investigated TC genesis frequency, location, track density, intensity, outer size, and landfalling features, as well as their temporal and spatial evolution characteristics. On average, the number of autumn TCs accounted for 42.1% of the annual total, slightly less than that of summer TCs (42.7%). However, TCs classified as strong typhoons or super typhoons were more frequent in autumn than in summer. In most years of the 68-yr study period, there was an inverse relationship between the number of autumn TCs and that of summer TCs. The genesis of autumn TCs was concentrated at three centers over the WNP: the first is located near (14°N, 115°E) over the northeast South China Sea and the other two are located in the vast oceanic area east of the Philippines around (14°N, 135°E) and (14°N, 145°E), respectively. In terms of intensity, the eight strongest TCs during the study period all occurred in autumn. It is revealed that autumn TCs were featured with strong typhoons and super typhoons, with the latter accounting for 28.1% of the total number of autumn TCs. Statistically, the average 34-knot radius (R34) of autumn TCs increased with TC intensity. From 1949 to 2016, 164 autumn TCs made landfall in China, with an average annual number of 2.4. Autumn TCs were most likely to make landfall in Guangdong Province, followed by Hainan Province and Taiwan Island.