论文部分内容阅读
由于语义可理解性及共享性,视觉属性作为刻画对象的中间特征表示在众多领域得到了广泛应用。视觉属性学习中,大量的人工成本用于属性定义和标注,因此难以避免地引入了主观偏见,属性表示的类别判别性难以保证,尤其面临对判别性要求较高的细粒度识别任务时更为明显。复合属性符合人类认知规律以及对象复杂多模分布的事实,从刻画对象的分布入手,以较低廉的代价建立兼具一定描述能力及较好判别能力的特征表示,以应对细粒度识别任务对判别特征和判别模型的较高要求。在细粒度识别代表性公开数据集CUB上验证了所提方法的有效性。在细粒度识