论文部分内容阅读
We develop a neuro-knowledge-based expert system (NKBES) frame in this work. The system mainly concerns with decision of gating system and die casting machine based on a neuro-inference engine launched under the MATLAB software environment. For enhancement of reasoning agility, an error back-propagation neural network was applied. A rapidly convergent adaptive learning rate (ALR) and a momentum-based error back-propagation algorithm was used to conduct neuro-reasoning. The working effect of the system was compared to a conventional expert system that is based on a two-way (forward and backward) chaining inference mechanism. As the reference, the present paper provided the neural networks sum-squared error (S5E) and ALR vs iterative epoch curves of process planning case mentioned above. The study suggests that the neuro-modeling optimization application to die casting process design has good feasibility, and based on that a novel and effective intelligent expert system can be launched at low cost.
We develop a neuro-knowledge-based expert system (NKBES) frame in this work. The system prime concerns with decision of gating system and die casting machine based on a neuro-inference engine launched under the MATLAB software environment. For enhancement of reasoning agility , an error back-propagation neural network was applied. A rapidly convergent adaptive learning rate (ALR) and a momentum-based error back-propagation algorithm was used to conduct neuro-reasoning. The working effect of the system was compared to a conventional expert system that is based on a two-way (forward and backward) chaining inference mechanism. As the reference, the present paper provided the neural networks sum-squared error (S5E) and ALR vs iterative epoch curves of process planning case mentioned above. study suggests that the neuro-modeling optimization application to die casting process design has good feasibility, and based on that a novel and effective intelligent expert system can be launched a t low cost.