论文部分内容阅读
<正>本文证明了如下基本定理:设(Ω,σ,u)为任一概率空间,(B,||·||)为任一弱紧生成的Banach空间,则任一弱随机元V:Ω→B必弱等价于一强可测随机元(?):Ω→B 从而本定理不仅去掉了Lewis定理中关于弱随机元有界性的限制且在Banach空间概率论中有广泛的应用.作为应用的例子,本文在弱紧生成的Banach空间中就弱2-阶弱随机元建立了其再生核Hilbert空间的性质定理.