论文部分内容阅读
针对传统Android恶意应用检测方法在处理大规模样本时存在的训练时间长、存储空间消耗大的问题,提出一种基于增量学习SVM的Android恶意应用检测方法。该方法提取Android应用的权限申请和API函数调用特征,利用增量学习SVM理论将训练样本集随机划分为初始样本集和若干个增量样本集,利用循环迭代方法训练SVM分类器,每次新的训练仅保留上一轮训练得到的支持向量集并合并到新增样本集中,舍弃大量对分类结果不产生影响的样本以提高分类器学习效率,同时产生新的支持向量集,并最终得到一个高精度的SVM分类器。通过