论文部分内容阅读
将机器学习并行化是进行海量数据挖掘的重要方式,但由于并行计算框架、机器学习算法的多样性,导致计算框架的选取及算法并行化存在着困难。本文对几种常见的并行计算框架的模型结构和工作机理进行了分析,根据算法中变量的依存关系将其分类,并将这几类算法进行了实验对比。实验结果表明,算法中变量的依存关系对其在并行化后的性能有巨大的影响。