论文部分内容阅读
In the rill erosion process,run-on water and sediment from upslope areas,and rill flow hydraulic parameters have significant effects on sediment detachment and transport.However,there is a lack of data to quantify the effects of run-on water and sediment and rill flow hydraulic parameters on rill erosion process at steep hillslopes,especially in the Loess Plateau of China.A dual-box system,consisting of a 2-m-long feeder box and a 5-m-long test box with 26.8% slope gradient was used to quantify the effects of upslope runoff and sediment,and of rill flow hydraulic parameters on the rill erosion process.The results showed that detachment-transport was dominated in rill erosion processes; upslope runoff always caused the net rill detachment at the downslope rill flow channel,and the net rill detachment caused by upslope runoff increased with a decrease of runoff sediment concentration from the feeder box or an increase of rainfall intensity.Upslope runoff discharging into the rill flow channel or an increase of rainfall intensity caused the rill flow to shift from a stratum flow into a turbulent flow.Upslope runoff had an important effect on rill flow hydraulic parameters,such as rill flow velocity,hydraulic radius,Reynolds number,Froude number and the Darcy-Weisbach resistance coefficient.The net rill detachment caused by upslope runoff increased as the relative increments of rill flow velocity,Reynolds number and Froude number caused by upslope runoff increased.In contrast,the net rill detachment decreased with an increase of the relative decrement of the Darcy-Weisbach resistance coefficient caused by upslope runoff.These findings will help to improve the understanding of the effects of run-on water and sediment on the erosion process and to find control strategies to minimize the impact of run-on water.