论文部分内容阅读
平面几何最值问题是高考常考题型之一,常用的求解策略:一是利用平面几何的几何原理找到最值存在的条件,进而求最值;二是构造目标函数,利用函数最值问题的求解策略进行求解。下面笔者举例说明,与读者交流。1利用平面几何原理求解例1椭圆(x~2)/4+(y~2)/3=1的左焦点为F,直线x=m与椭圆相交于点A,B。当△FAB的周长最大时,△FAB的面积是____。
Plane geometry is the value of the most commonly used test questions one of the commonly used solution strategies: First, the use of geometric principles of plane geometry to find the existence of the most value conditions, and then seeking the most value; Second, the construction of the objective function, the use of the most value of the function of the problem Solve the strategy to solve. The following example, the author, and readers exchange. 1 Using Plane Geometry Principle Example 1 The left focus of an ellipse (x ~ 2) / 4 + (y ~ 2) / 3 = 1 is F, and the line x = m intersects the ellipse at points A, B. When the maximum circumference of △ FAB △ FAB area is ____.