论文部分内容阅读
针对病变视网膜血管结构的计算机辅助诊断问题,提出了一种多尺度卷积核U-Net模型的视网膜血管分割方法.在U-Net模型基础上设计了融合Inception模块和最大索引值上采样方法的多尺度卷积神经网络结构.在网络训练阶段,采取旋转、镜像等操作进行数据集扩充,运用CLAHE算法进行图像预处理;训练后得到的双通道特征图,进行Softmax归一化;最后通过改进的代价损失函数对归一化结果迭代优化,得到完整的视网膜血管分割模型.实验结果表明,所提方法在DRIVE数据集上分割的准确率达到0.969 4,灵敏性达到