论文部分内容阅读
针对短时交通流数据的高度复杂性、随机性和非稳定性,为了进一步提高短时交通流预测的精度,提出一种基于粒子群优化投影寻踪回归模型的短时交通流预测方法。通过灰色关联度分析确定交通流预测影响因子,然后采用粒子群优化算法构建非参数投影寻踪回归模型,并利用上海市南北高架快速路的感应线圈实测数据进行实验验证和对比分析。实验结果表明:PSO-PPR模型的短时交通流预测效果明显提高,其平均预测精度分别比ARIMA模型和BPNN模型提高37.8%和27.2%。