基于特征联合概率分布和实例的迁移学习算法

来源 :模式识别与人工智能 | 被引量 : 0次 | 上传用户:wangshucai123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对在单一匹配边缘概率分布以缩减源域和目标域的差异性时存在的泛化能力差的问题,提出联合边缘概率分布和条件概率分布减小域间差异性的基于特征和实例的迁移学习算法,通过核主成分分析在子空间中寻找样本新的特征表示,在该子空间中利用最小化最大均值差异,联合匹配边缘概率分布和条件概率分布以减小源域和目标域间的差异性.同时利用L2,1范数约束选择源域中相关实例进行训练,进一步提高迁移学习获得的模型泛化性能.在字符集和对象识别数据集上的实验表明文中算法的有效性.
其他文献
社交网络已经成为人们获取信息、交友的主要媒体,但其自身虚拟性、匿名性等特点在给人们带来便利的同时也使用户身份不易确认.为此,文中提出基于完全子图的社交网络用户身份特征
针对资源稀少情况下小语种的声学建模问题,提出根据解码后文本的困惑度挑选无监督数据并重新训练声学模型的策略.使用少量精标数据训练得到一个初始种子模型后,解码大量无监督数