论文部分内容阅读
为了提高MEMS微器件成品的封装质量和效率,本文自主设计了新型的激光辅助阳极键合技术系统,并将其运用于硼硅玻璃BF33与硅的键合实验,成功实现了硅与玻璃在低功率下局部区域的完好键合.采用扫描电子显微镜对键合样本界面的微观结构进行分析,结果表明:在玻璃/硅的键合界面有明显的过渡层生成.使用能谱仪测定玻璃基体、过渡层以及硅层所含的化学元素种类及其质量分数,通过对比分析认为:激光在键合层的致热温度和界面区的强电场导致硼硅玻璃耗尽层中的氧负离子向键合界面迁移扩散,并与硅发生氧化反应形成中间过渡层,而该界面过渡层的形成是实现玻璃/硅键合的基本条件.该种新型键合技术操作简单、速度快、灵活性高,可以针对不同键合材料实时调整激光功率、行走速度、扫描时间等参数,可广泛应用于MEMS封装器件中硅与玻璃的键合.
In order to improve the package quality and efficiency of MEMS micro-device finished products, a new type of laser-assisted anode bonding system has been independently designed and applied to the bonding experiments of borosilicate glass BF33 and silicon. Power of the local area intact bonding.Using scanning electron microscope (SEM) to analyze the microstructure of bonded sample interface, the results show that: in the glass / silicon bonding interface obvious transition layer generation.Using energy dispersive spectroscopy to determine the glass matrix, The transitional layer and the chemical elements contained in the silicon layer and its mass fraction, through the comparative analysis, that: the heating temperature of the bonding layer and the strong electric field in the interface region lead to the bonding of oxygen anions in the borosilicate glass depletion layer The interface migration and diffusion, and oxidation reaction with silicon to form an intermediate transition layer, and the formation of the interfacial transition layer is to achieve the basic conditions of glass / silicon bonding. The new bonding technology is simple, fast, flexible, For different bonding materials real-time adjustment of laser power, walking speed, scanning time and other parameters, can be widely used in MEMS package silicon and glass bonding.