面向交叉口主动安全的车路协同辅助决策系统设计

来源 :公路交通科技 | 被引量 : 0次 | 上传用户:icewangb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对交叉口红灯启亮前10 s,驾驶行为不稳定造成的交通秩序混乱、安全性差和效率低等问题,为控制交叉口处的行驶车速,辅助驾驶员准确决策,开发了一种面向交叉口主动安全的车路协同辅助决策系统。采用系统分层模块化设计,将系统分为信息采集、决策控制、智能埋地灯3个模块;根据交叉口信号相位、驶近车辆的速度信息,在分析两难区动态特性的基础上建立辅助决策模型,对当前驾驶行为的安全性进行判断;根据判断结果控制智能埋地灯状态与动态黄灯时间。通过智能埋地灯在熄灭、启亮红色、红色闪烁3种状态间灵活切换,对驾驶员进行视觉提醒,同时
其他文献
装配式建筑钢结构具有节能、环保、资源可循环利用的特点,符合我国未来建筑发展方向.但普通钢材易受腐蚀,钢材表面防腐是目前钢结构设计中必须考虑的内容.由于防腐作业成本高
为了有效减少因环氧沥青柔韧性较差而引起的铺装层病害,进一步促进环氧沥青在钢桥面铺装上的推广应用,对环氧沥青的柔韧性问题进行了详细阐述.从环氧树脂、环氧沥青结合料、
为适应国内外建筑钢结构行业的迅猛发展,满足钢结构对建筑用钢板力学性能和特殊性能的要求,首钢自主研发了460 MPa抗震耐腐蚀耐火钢,钢板的屈服强度为460 MPa(简称460FRW钢).
为深入研究高速公路互通合流区交通冲突空间分布特征,克服传统数据采集的条件限制,弥补断面数据采集的缺点,利用无人机视频采集高精度、区域连续的多车辆轨迹数据,并运用OpenCV视频自动分析系统和Matlab扩展工具,依据帧间差分法和时空上下文视觉跟踪算法原理,进行车辆识别与跟踪,记录采集范围内车辆每一帧的微观车辆运动数据。运用交通冲突识别指标TDTC(Time Difference to Collision)同时识别同车道和异车道冲突,将交通冲突分为严重冲突、中度冲突和一般冲突,并使用累计频率法确定严重冲突与
为研究不同组织对于建筑用抗震耐火钢的性能影响,设计一种节钼(Mo)型含量的试验钢,其组织由铁素体+贝氏体组成.研究发现,采用不同的轧制工艺,可获得具有不同贝氏体体积分数的
为了研究钢-混连续组合梁徐变,考虑永久荷载作用下的徐变效应与负弯矩区混凝土开裂效应之间的耦合效应,采用了徐变等温法,将徐变效应等效为与时间无关的温度梯度作用效应,避免了有限元徐变非线性分析中的显式隐式积分选择、迭代不收敛等困难,为工程实用计算提供了一种简单方便的方法。基于力法截面分析建立了平衡和变形协调方程组,基于曲率等效原则推导了钢-混组合梁永久作用徐变等效温度梯度的解析和简化两套计算公式,能够用于静定组合梁和超静定组合梁分析,对强迫位移等其他荷载类型解析解推导起到了借鉴作用。徐变后超静定连续梁的内力和
水泥混凝土路面加铺环氧沥青混凝土超薄罩面,可在相对较低建设成本下,充分发挥环氧沥青混凝土高性能的优势,解决路面行车舒适性、安全性及耐久性问题,同时可结合水泥混凝土路面长寿命结构特点,建造长寿命高性能路面结构。为评价该路面结构的层间黏结性能,采用环氧沥青、SBS改性沥青作为层间黏结材料,利用自行设计加工的斜剪、拉拔夹具,通过斜剪、拉拔试验,研究了洒布量、试验温度、加载速率、界面浸水及老化等因素对该路面结构层间黏结性能的影响。试验结果表明:(1)浸水损害条件对层间黏结性能的影响十分显著,浸水后环氧沥青剪切、拉
为研究不同沥青路面基层的水损坏形态,选取半刚性基层与级配碎石基层为研究对象,以动空隙水压力的变化情况为研究指标,基于有限元法建立理论模型预测了不同温度-荷载-行车速
钢纤维对混凝土的增强效果与钢纤维-混凝土基体界面过渡区的黏结性能密切相关,因此界面过渡区的力学性能研究在钢纤维混凝土结构设计中一直是重要的研究课题。为了研究钢纤维与混凝土之间界面过渡区的力学性能,应用混凝土损伤塑性模型(CDP模型)和内聚力单元,建立了含有界面的钢纤维混凝土二维模型,得到了黏结应力滑移曲线与计算的黏结应力滑移4段式模型曲线吻合较好,说明了模型的合理性。应用此模型对钢纤维混凝土界面进行了抗剪强度和抗拉强度研究,分析了混凝土基体和界面损伤、破坏过程。结果表明:界面强度对钢纤维混凝土的力学性能影
为研究液压夯实机补强台背路基过程中对桥台的动力影响,依托某高速公路桥隧过渡段台背路基填筑工程,采用有限元软件ABAQUS建立了“夯锤-路基-桥台”相互作用模型,模型的准确性采用足尺夯击试验进行验证,仿真过程中以桥台最大动位移和最大动应变值作为评价指标,分析了夯锤落距、夯点与桥台距离、路基初始压实度、桥台混凝土强度等级和桥台顶部支撑条件等因素对桥台变形的影响。结果表明:夯击产生的土压力实测数值与仿真数值的误差均在10%以内,并且桥台动位移和动应变沿桥台高度方向的变化趋势符合常规,仿真模型可靠;桥台在夯击