论文部分内容阅读
Water-soluble CdSe nanoparticles were synthesized using AOT (sodium bis(2-ethylehexyl)-sulfosuccinate) as stabilizer, cadmium acetate and Na2SeSO3 as precursors in aqueous phase. The influence of some key factors, such as reaction time, temperature, concentration and molar ratio of precursors on the optical properties of CdSe nanoparticles was systematically investigated through UV-Vis and PL spectra. Powder X-ray diffraction (XRD) was used to characterize the crystalline structure of synthesized CdSe nanoparticles. As-prepared CdSe nanoparticles exhibit an apparent quantum confinement effect and typical hexagonal wurtzite structures. Finally, the optimal experimental conditions were obtained.
Water-soluble CdSe nanoparticles were synthesized using AOT (sodium bis (2-ethylehexyl) -sulfosuccinate) as stabilizer, cadmium acetate and Na2SeSO3 as precursors in aqueous phase. The influence of some key factors, such as reaction time, temperature, concentration and molar ratio of precursors on the optical properties of CdSe nanoparticles was systematically investigated through UV-Vis and PL spectra. Powder X-ray diffraction (XRD) was used to characterize the crystalline structure of synthesized CdSe nanoparticles. confinement effect and typical hexagonal wurtzite structures. Finally, the optimal experimental conditions were obtained.