论文部分内容阅读
为了提高铁路客运量现有预测方法的预测能力,用训练样本与测试样本间的马氏距离对惩罚因子进行加权,对传统的支持向量回归机(SVR)进行了改进,在此基础上提出了基于改进SVR的铁路客运量时间序列预测方法.以1980~1998年铁路客运量预测为例,对SVR方法和BP人工神经网络(BPANN)方法进行了比较,结果表明,SVR方法能获得更准确的预测结果.