论文部分内容阅读
针对传统RBF神经网络学习算法构造的网络分类精度不高,传统的k-means算法对初始聚类中心的敏感,聚类结果随不同的初始输入而波动。为了解决以上问题,提出一种基于改进k-means的RBF神经网络学习算法。先用减聚类算法优化k-means算法,消除聚类的敏感性,再用优化后的k-means算法构造RBF神经网络。仿真结果表明了该学习算法的实用性和有效性。