论文部分内容阅读
为了提高支持向量机(SVM)在多类分类中的分类效果,提出了一种基于改进粒子群优化(IMPSO)算法和协作式递归神经网络(CRNN)的多类SVM分类方法(IMPSO_CRNN_SVM算法).首先引入自适应惯性权重及自适应粒子变异,以此改进粒子群优化算法(PSO)在优化SVM参数过程中存在的容易陷入局部最优和早熟等问题;然后基于多类SVM设计一个CRNN,并利用随机分配的训练集对该网络进行训练并构建最终决策函数,从而实现多类数据的"一次性"分类.最后利用3种数据集和实际应用对IMPSO_C