论文部分内容阅读
上、下半连续性在数学中的重要性不言而喻,在微观经济分析中也有着广泛应用,特别是静态优化问题。分别在单值映射、集值映射中探讨了上半连续性和下半连续性的关系。先证明了单值映射上、下半连续性等价的结论(定理1),并利用引理1对常见函数的上、下半连续性进行了探讨以进一步说明定理1;然后通过举反例进行论证,得出了集值映射中上、下半连续性不等价的结论(定理2);最后例举了上、下半连续性在数理经济上的应用,具有创新价值。通过对数理经济学中参数约束最优化问题的最大值定理(引理2)条件和结论所做的两点注记。并附以具体实例予