论文部分内容阅读
Full waveform inversion method is an approach to grasp the physical property parameters of un- derground media in geotechnical nondestructive detection and testing field. Using finite-diference time domain(FDTD) method for elastic wave equations, the full-wave field in horizontally inhomogeneous stratified media for elastic wave logging was calculated. A numerical 2D model with three layers was computed for elastic wave propagation in horizontally inhomogeneous media. The full waveform inversion method was verified to be feasible for evaluating elastic parameters in lateral inhomogeneous stratified media and showed well accuracy and conver- gence. It was shown that the time cost of inversion had certain dependence on the choice of starting initial model. Furthermore, this method was used in the detection of nonuniform grouting in the construction of immersed tube tunnel. The distribution of nonuniform grouting was clearly evaluated by the S-wave velocity profile of grouted mortar base below the tunnel floor.
Full waveform inversion method is an approach to grasp the physical property parameters of un- derground media in geotechnical nondestructive detection and testing field. Using finite-diference time domain (FDTD) method for elastic wave equations, the full-wave field in horizontally inhomogeneous stratified A numerical 2D model with three layers was computed for elastic wave propagation in horizontally inhomogeneous media. The full waveform inversion method was verified to be feasible for evaluating elastic parameters in lateral inhomogeneous stratified media and showed well accuracy and conver- gence. It was shown that the time cost of inversion had certain dependence on the choice of starting initial model. It, the method was used in the detection of nonuniform grouting in the construction of immersed tube tunnel. The distribution of nonuniform grouting was clearly evaluated by the S-wave velocity profile of grouted mortar base below the tunnel floor.