论文部分内容阅读
神经网络分类器存在容易出现过学习、欠学习、陷入维数灾以及局部最小等问题,支持向量机分类器也存在运算比较复杂,模型选择和核函数的构造比较困难的问题,而贝叶斯分类器只有在训练样本数趋于无穷时,训练结果才趋于真实的模型,因此,提出了一种基于Adaboost.M1理论的车型分类算法,该算法简单易用,只需要寻找一个精度比随机预测略高的弱分类器,不需要调节任何参数,不需要先验知识,而且有足够的理论支持.最后通过实验验证了该算法进行车型分类的有效性.