论文部分内容阅读
边坡稳定性评价与预测具有高度非线性和不确定性特征,难以用准确的数学模型表达。选取多个边坡工程实例构成学习样本集,以土体重度、内摩擦角、黏聚力、坡角、坡高、孔隙压力比6个主要影响因素作为土坡稳定性的评价判别指标;然后采用粒子群算法优化BP神经网络模型,实现混合算法,在保持BP网络算法误差反向传播修正权值特点的同时,将网络权值和阈值粒子化,利用粒子群算法的全局搜索性实现网络权值和阈值的更新,从而加快收敛速度和提高收敛精度,避免传统粒子群结合BP网络算法的“早熟”现象;通过与其他算法进行边坡稳定性评价的比较分析