论文部分内容阅读
针对作物病害图像的病斑分割问题,提出一种直觉模糊C均值(Intuitional Fuzzy C-means,IFCM)聚类算法。通过引入隶属度、非隶属度和犹豫度3个参数来表示模糊集,从而定义了用来表示模糊集的模糊度的直觉模糊熵(IFE)这一概念,对传统的FCM算法进行改进,克服了FCM算法分割时计算目标函数容易陷入局部极小值,而且聚类数目需要提前设定初值的缺点。将预处理过的作物(以黄瓜为例)病害叶片图像作为研究对象采用该改进算法进行病斑图像分割,得到了很好的分割效果。与其他分割方法进行比较,结果表明