基于改进型D3QN深度强化学习的铁路智能选线方法

来源 :铁道科学与工程学报 | 被引量 : 0次 | 上传用户:dayoudian
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统的人工选线方法劳动强度大,设计效率低,随着我国铁路建设重心向西部复杂艰险山区转移,人工选线面临的困难日趋凸显。为缩减铁路选线的人力物力成本,提高设计效率,亟需发展结合了人工智能、信息技术的现代选线技术。为此,提出一种基于深度强化学习理论的铁路智能选线方法。以带有空间属性信息的数字高程模型为选线环境,以相邻空间点间的建造费用为即时奖励,以工程建造费用最小为优化目标,设置离散化的备选动作,考虑多种约束条件,构建面向铁路选线的深度强化学习模型。结合深度学习的感知能力和强化学习的决策能力,利用双竞争深度Q学习网络(Dueling-Double-Deep Q Network,D3QN)对模型进行训练,既克服强化学习问题对复杂状态和动作空间难以收敛的缺点,同时解决了传统DQN算法易于出现过估计、训练不稳定的问题,实现自动对选线环境进行感知、搜索、判断、决策,最终寻得目标函数最优的线路方案。以某山区铁路对本方法进行验证,实验结果表明,该方法能搜索到多样化的线路备选方案,可以为设计人员提供新的设计思路;有效降低了铁路建设的经济费用,较人工选线方案节约最多达17.5%。智能选线方法可以帮助节省选线工作成本,不遗漏有价值的方案,提高工作效率。
其他文献
传统的推荐算法随着用户和项目的数量增多,新用户在单一项目上的行为减少,导致推荐质量较低,鉴于此,提出一种融合文档主题算法(LDA)和交替最小二乘算法(ALS)的混合协同过滤推荐算法。LDA-ALS算法结合了文档主题算法和交替最小二乘算法的优势,缓解因用户信息缺失造成的冷启动问题,并将高维的用户-项目评分矩阵映射到低维的近似矩阵中,有效缓解了数据稀疏性问题。实验结果表明:在Spark平台下,该算法在
期刊
茶叶企业作为我国历史底蕴较为悠久的传统类企业,与现代化企业相比在会计信息化的发展方面略有不足,对于会计系统的操作以及应用较差,严重阻碍了茶叶企业会计信息化的发展。本文围绕大数据背景下茶叶企业会计信息化发展路径进行研究,以供借鉴。
在幼儿园教学活动中,多媒体教学已经广泛应用,对幼儿园教育教学活动质量产生了深远的影响,优化了传统教学,取得了良好效果。然而教学过程中也出现了不恰当使用多媒体的问题。对多媒体教学在幼儿园教学中的应用优势、需注意的问题进行探究,进一步提升幼儿园教育教学活动质量。