论文部分内容阅读
在当前Web服务海量增加、现有Web服务选择算法低效、用户匹配度差的基础上,针对K中心点算法存在的质点偏移、准确率低和容易发生畸变等问题,提出一种大数据环境下基于K中心点优化算法的Web服务组合方法。该方法是在大数据环境下,根据不同用户需求满意度及Web服务QoS参数,对基于优化初始聚类中心的K中心点算法的Web服务选择及最优Web服务组合进行研究。同时针对不同的选择方法对服务动态选择及组合的准确度、迭代更新次数、候选集选择时间及选择总时间进行实验分析,验证了本文研究方法的有效性和可靠性。