论文部分内容阅读
针对BP神经网络在建立模型时没有确定网络结构的缺点和支持向量机(SVM)模型参数选择对预测精度影响大的局限性,提出一种结合混沌系统的粒子群算法(CPSO)去优化SVM模型的惩罚因子C和核函数中参数σ的混合模型,利用混沌系统的不确定性理论使传统的粒子群算法能有效克服收敛速度慢、容易达到局部最优值的缺点,使CPSO算法能更快、更准确找到全局最优值.经过参数优化SVM模型有效提高了预测精度并利用新的混合模型对宁夏地区小麦条锈病流行级别进行预测.结果表明,相对于传统SVM模型、组合PSO-SVM模型和组合PSO-