RMHSForest: Relative Mass and Half-Space Tree Based Forest for Anomaly Detection

来源 :电子学报(英文) | 被引量 : 0次 | 上传用户:lovetianbing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Anomaly detection refers to identify the true anomalies from a given data set. We present an ensemble anomaly detection method called Relative mass and half-space tree based forest (RMHSForest), which detect anomalies, including global and local anomalies, based on relative mass estimation and half-space tree. Different from density or distance based measure, RMHSForest utilizes a novel relative mass estimation to improve the detection of local anomaly. Meanwhile, half-space tree based on augmented mass can estimate a mass distribution efficiently without density or distance calculations or clustering. Our empirical results show that RMHSForest outperforms the current popular anomaly detection algorithms in terms of AUC and processing time in the test data sets.
其他文献
欧洲的医院感染趋势〔Greco,D.InstitutoSuperiorediSanita,Rome,Italy.〕在西欧,每年有数百万例医院感染的报告。八一年代,许多国家为数众多的医院设立了控制这些感染的委员会。国家的重视推动了有关监督机构的发展,对... Tre
随着当前电力改革以及电力市场的不断推进,虚拟电厂的发展已成为其重点组成部分,也是市场交易复杂因素的主要集中部分,其中柔性负荷和清洁能源给虚拟电厂带来了巨大的挑战.考
Quaternion kernel Fisher discriminant analysis(QKFDA) is proposed for feature level multimodal biometric recognition.In quaternion division ring,QKFDA extracts the most discriminative information from