论文部分内容阅读
基于深度学习提出一种新的流体智力预测模型,并在特征可解释性上进行了初步探索。新方法的核心思想是先通过空间自编码机分别对局部功能连接指标、局部功能连接密度和神经活动的四维时空一致性进行特征自动学习获得时空间特征,然后结合深层神经网络与集成学习对个体流体智力评分进行预测。最后,利用皮尔逊相关系数与平均绝对误差考察该模型的个体流体智力评分预测表现。结果表明,本研究提出的方法在使用个体局部功能连接预测流体智力中,预测值与真实值之间的平均绝对误差为:4.1±3.2,皮尔逊相关系数达0.55(P=1.9