论文部分内容阅读
扣件的完损状态关乎铁路系统的安危,而传统检测算法运算复杂且精度不足,为进一步提升检测性能,提出基于BEMD-IPSO-SVM的扣件完损状态检测算法。该算法首先对初始化的扣件图像进行二维经验模态分解,提取固有模态函数的频谱特征,通过改进粒子群算法优化支持向量机来实现检测分类,达到了简化运算,增强泛化性,提升识别准确度的目的。通过实验仿真得出平均检测准确率可达95.15%,证明该算法在扣件检测方面切实可行。