论文部分内容阅读
提出一种Tetrolet框架下基于联合稀疏表示结合改进脉冲耦合神经网络规则的红外与可见光图像融合方法.对源红外与可见光图像进行不考虑旋转和反射情况下的Tetrolet系数分解;采用联合稀疏方法进行低频系数融合,通过学习字典进行低频系数的精确拟合并融合.在高频子带系数融合上,采用改进脉冲耦合神经网络设置相应的融合规则,根据神经元的点火次数来选择融合图像的高频系数;并对处理后的高低频系数值进行Tetrolet逆变换获取最终融合结果.结果表明,该方法能够有效保留待融合图像的边缘与细节特征,融合结果具有良好的视觉