钢绞线拉索弹性模量修正及其对缆索体系桥梁的影响

来源 :贵州大学学报(自然科学版) | 被引量 : 0次 | 上传用户:bloodfort
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:大跨度缆索体系桥梁有限元仿真模拟分析过程中,通常将钢绞线拉索等效为等截面均值圆杆,未考虑钢丝不同绞捻方式对钢绞线拉索整体弹性模量的影响。基于钢绞线拉索的钢丝空间几何形态和钢丝复合受力特点推导其等效弹性模量系数及n丝钢绞线弹性模量修正通用公式,并以洪鹤大桥为工程背景,分析钢绞线拉索弹性模量的修正对斜拉桥主梁位移、应力及拉索索力的影响。分析结果表明:对拉索弹性模量进行修正后,二期调索工况下的主梁跨中挠度变化量达78.9 mm,钢梁最大应力变化比值达9.0%。在采用平行钢绞线拉索的大跨度缆索体系桥梁分析计算中,应考虑钢绞线拉索弹性模量的修正。
  关键词:钢绞线;弹性模量修正;大跨度桥梁;有限元模拟分析
  中图分类号:U448.27
   文献标志码:A
   拉索作为一种常见的工程构件,主要用以承受轴向拉力。它既能充分发挥材料的轴向承载能力,又可避免结构因受压而产生的稳定性问题,具有强度高、自重小、几何构型灵活多变等优点,被广泛应用于大跨度桥梁工程[1-3]。按照内部构造要素和组成方式的不同,拉索可以分为钢绞线、钢丝束、钢丝绳和钢拉杆等[4],其中钢绞线具体参数需根据工程项目要求定制[5-7]。
  在钢绞线拉索中,索体由多根钢丝通过不同方式绞捻而成,由于拉索中各钢丝并非均匀受力,拉索整体的弹性模量要小于等截面均值圆杆的弹性模量,这将会直接影响斜拉索的拉伸刚度[8]。孔庆凯等[9]通过基于绕捻钢丝的空间几何位置推导出7丝钢绞线的弹性模量计算公式;孙国军[10]基于钢拉索受力过程变形协调推导出多丝钢拉索弹性模量计算公式;陈云刚等[11]通过研究全封闭碳纤维和高强钢丝复合拉索的协调工作机理,推导出37股高强钢丝束弹性模量计算公式;戴公连等[12]用长线法测量预应力钢绞线的弹性模量;张蕊等[13-14]用非接觸式数字图像相关方法测量出预应力钢绞线的弹性模量;JUDGE等[15]通过建立三维模型准确预测螺旋钢绞线的力学性能。上述研究未给出钢绞线拉索的弹性模量换算的通用计算公式,且大跨度缆索体系桥梁有限元仿真模拟分析大多将钢绞线拉索等效为等截面均值圆杆,未对其弹性模量进行修正。本文基于钢绞线的钢丝空间几何形态和钢丝复合受力特点推导钢绞线等效弹性模量系数及n丝钢绞线弹性模量修正通用公式,并以采用平行钢绞线拉索的洪鹤大桥为工程背景,分析拉索弹性模量的修正对桥梁二期调索后主梁的应力、位移及二期铺装后拉索索力的影响,为采用平行钢绞线拉索的大跨度缆索体系桥梁有限元仿真分析验算提供参考。
  1 钢绞线弹性模量的修正
  以7丝钢绞线为例,其外形构造如图1所示[16]。7丝钢绞线是由6根外层钢丝围绕1根中心钢丝组成的7根高强钢丝(Φ3~Φ5)捻制而成。如图1、图2,其外接圆轮廓尺寸称为公称直径D,公称面积为A0;捻距L为外层钢丝旋转360°所对应的钢绞线长度,其长度一般为公称直径D的12~18倍;捻角α为外层钢丝的切线与中心钢丝的夹角;dw和dz分别对应外层钢丝和中心钢丝的正截面直径;Aw和Az分别对应单根外层钢丝和中心钢丝的正截面面积;S为一个捻距内的外层钢丝长度;R为外层钢丝中心螺旋线与钢绞线形心的距离;E和E′分别为钢丝的弹性模量以及钢绞线的等效弹性模量。
  2 工程背景及结构仿真计算
  洪鹤大桥主桥为两座主跨500 m的双塔双索面叠合梁斜拉桥[17-18],以磨刀门水道主航道桥为例进行分析,该桥跨径为(73+162+500+162+73)m,主梁分为85个节段,斜拉索共计160根,采用平行钢绞线拉索体系。每个主塔边跨、中跨各20对索,梁上基本索距12.0(8.0)m,塔上基本索距2.0 m,根据受力大小共分7类,钢绞线股数分别为39、47、55、59、66、73、78 等7种类型,捻距L为公称直径D的12~16倍。边跨各设置一个辅助墩,主桥结构体系采用半漂浮体系,主塔、边墩、辅助墩处约束横向线位移,释放纵向线位移,见图4、图5。
   采用桥梁有限元计算软件Midas Civil对桥梁结构进行仿真模拟分析,全桥有限元模型如图6所示。全桥共建立922个节点和751个单元,按照施工工序建立322个施工阶段。主塔、主梁、桥墩采用梁单元模拟,斜拉索采用只受拉桁架单元模拟,拉索截面采用圆形截面。
  桥梁主塔采用C50混凝土,叠合梁中预制混凝土板采用C60混凝土,钢材采用Q370qD桥梁结构用钢。斜拉索采用高强度低松弛的7丝无粘接钢绞线,公称直径D=15.2 mm,抗拉标准强度fpk=1 860 MPa。当不考虑钢绞线弹性模量修正时,钢绞线弹性模量为E′=1.95×105 MPa。当捻距L=12D=182.4 mm,即捻距L为公称直径D的12倍时,此时U最小,因中心钢丝实际要比外层钢丝加粗2.5%左右,中心钢丝直径dz=5.15 mm,外层钢丝直径dw=5.025 mm,将上述参数代入式(11)得到等效弹性模量系数U=0.949 93。
  3 拉索弹性模量修正影响研究
  对于叠合梁斜拉桥,由于施工时有架梁吊机且位置不断变化,为确保主梁的弯矩在承受能力范围内,同时避免主梁一次张拉索力过大而位移变化幅值过大,必须进行斜拉索的多次张拉。另外考虑实际施工、测量等误差,为达到设计的合理成桥状态,进行成桥后的调索是必要的。由于该桥在二期铺装前进行全桥的二期调索,所以调索的目的在于主梁通过斜拉索索力的调整提升一定的高度来抵消主梁二期铺装后的下挠,尤以跨中位置位移最为明显,同时保证主梁的应力不能超过材料容许范围。钢绞线斜拉索弹性模量修正后,计算二期调索后主梁位移变化值及其最大应力变化值,由于全桥边跨位移不明显,仅列举出8#塔斜拉索EC11至9#塔斜拉索WC11段的主梁位移和最大应力,见表1、表2和图7。    由表1可知,斜拉索彈性模量修正前后主梁最大位移差出现在跨中位置,其值为78.9 mm,原因在于斜拉索弹性模量影响其轴向刚度从而导致索梁节点位移不同。修正前后主梁位移差与修正前位移的比值呈现出往跨中方向逐渐增大的趋势,最大为12.1%。由表2可知,拉索弹性模量修正后钢梁最大应力差与修正前的最大比值为9.0%,而混凝土板的最大应力基本保持不变。
  为使桥梁达到合理的成桥状态,需控制拉索在成桥时的索力。作为该桥的最后一个施工阶段,二期铺装后会导致斜拉索索力被动增大,因此需要较为准确地分析二期铺装阶段的索力变化值。施加二期恒载后,8#塔斜拉索EC11—EC20、9#塔WC11—WC20的索力变化如图8所示。
  从图8可以看到,斜拉索弹性模量修正对二期铺装后引起的索力变化基本没有影响。
  4 结论
  本文通过钢绞线的外层钢丝空间几何形态和钢丝复合受力变形特点,推导出钢绞线拉索的等效弹性模量系数,并以洪鹤大桥为工程背景,分析拉索弹性模量的修正对大跨度斜拉桥二期调索后主梁的位移和应力影响以及二期铺装后引起的拉索索力影响。经过分析和比较,得出以下结论:
  1)当中心钢丝与外层钢丝尺寸固定时,捻距越小,钢绞线的弹性模量和轴向刚度也越小。
  2)拉索弹性模量修正对斜拉桥二期调索后的钢梁最大应力和主梁跨中位移影响明显,对二期调索后的混凝土板最大应力及二期铺装后引起的索力变化基本无影响。
  3)在采用平行钢绞线拉索的大跨度缆索体系桥梁有限元仿真模拟计算中,为确保计算结果的准确性,应考虑钢绞线拉索弹性模量的修正。
  参考文献:
  [1]H. MAX I. Cable structures[M]. Massachusetts: The MIT Press, 1981.
  [2]邵旭东.桥梁工程[M]. 北京: 人民交通出版社, 2014.
  [3]SUN G J, YUAN J, XUE S U, et al. Experimental investigation of the mechanical properties of zinc-5% aluminum-mixed mischmetal alloy-coated steel strand cables[J]. Construction and Building Materials, 2020, 233: 117310.1-117310.16.
  [4]肖骁, 陈志华, 刘红波, 等. 结构用拉索的组成与分类[C]//第十四届全国现代结构工程学术研讨会. 天津: 天津大学, 天津市钢结构协会, 2014: 349-358.
  [5]中华人民共和国工业和信息化部. YB/T 5004—2012, 镀锌钢绞线[S]. 北京: 冶金工业出版社, 2012.
  [6]中国国家标准化管理委员会, 中华人民共和国国家质量监督检验检疫总局. GB/T 5224—2014, 预应力混凝土用钢绞线[S]. 北京: 中国标准出版社, 2014.
  [7]中国国家标准化管理委员会, 中华人民共和国国家质量监督检验检疫总局. GB/T20492—2006, 锌-5%铝-混合稀土合金镀层钢丝、钢绞线[S]. 北京: 中国标准出版社, 2006.
  [8]杨吉新, 喻桥, 石旷,等. 平行钢绞线和平行钢丝斜拉索对比分析[J]. 工程与建设, 2019, 33(1): 38-40.
  [9]孔庆凯, 万鹏. 钢绞线的基本力学性能及其有限元方法模拟[J]. 四川建筑, 2003(1): 20-22.
  [10]孙国军. 基于拉索精细化物理特性的弦支结构体系力学性能研究[D]. 天津: 天津大学, 2013.
  [11]陈云钢, 郭正兴, 刘家彬, 等. 全封闭碳纤维与高强钢丝复合拉索的弹性模量[J]. 东南大学学报(自然科学版), 2011, 41(6): 1266-1272.
  [12]戴公连, 吕海燕. 预应力钢绞线弹性模量及应变修正系数的分析[J]. 长沙铁道学院学报, 1993(1): 27-32.
  [13]张蕊, 贺玲凤. 数字图像相关测量钢绞线的弹性模量[J]. 中北大学学报(自然科学版), 2010, 31(4): 409-413.
  [14]张蕊, 贺玲凤, 胡斌. 数字图像相关测量钢绞线弹性模量的应用研究[J]. 工程力学, 2011, 28(9): 251-256.
  [15]JUDGE R, YANG Z, JONES S W, et al. Full 3D finite element modelling of spiral strand cables[J]. Construction and Building Materials, 2012, 35: 452-459.
  [16]PODOLNY W, SCALZI J B. Construction and design of cable-stayed bridges[M]. New York: A Wiley-Interscience Publication, 2015.
  [17]陈维家, 张强, 何铁明. 珠海洪鹤大桥主航道桥总体设计[J]. 桥梁建设, 2020, 50(4): 77-81.
  [18]孟庆虎, 衷爱国. 珠海洪鹤大桥首个桥塔成功封顶[J]. 世界桥梁, 2019, 47(4):95.
  (责任编辑:曾 晶)
  Abstract:
  In the process of finite element simulation analysis of long span cable system bridge, the cable is usually equivalent to a circular rod with equal section mean value, and the influence of different twisted ways on the elastic modulus of the cable is not considered. The equivalent elastic modulus coefficient and general formula for correction of elastic modulus of N wire strand is derived based on the spatial geometry of the cable and the composite stress characteristics of the cable, and the influence of the modified elastic modulus of the cable on the displacement, stress and cable force of the cable-stayed bridge is analyzed with Honghe Bridge as the engineering background. The analysis results show that after the elastic modulus of the cable is modified, the mid-span deflection of the main girder reaches 78.9mm and the maximum stress change ratio of the steel girder reaches 9.0% under the condition of second-stage cable force adjustment. In the analysis and calculation of bridge with long span cable system using parallel steel strand cable, the elastic modulus of cable should be modified.
  Key words:
  steel strand; modification of elastic modulus; long span bridge; finite element simulation analysis
其他文献
摘 要:結合格子Boltzmann方法和隐式扩散浸入边界方法,实现流体-固体耦合运动的求解。预测的速度和压力场可以通过格子Boltzmann方法快速求解,而流固耦合界面力由满足流固界面的无滑移边界条件隐式获得,固体边界节点与流场节点间的信息交换通过高阶导数光滑函数实现。该方法的主要优点是易于实施,效率高,并且减少了非物理振荡和非物理流线穿透。为了确定该数值方法的有效性,通过圆柱绕流和翼型绕流基准算
研究了一种基于法布里−珀罗标准具多光束干涉成像的微小角度测量方法。通过计算同心干涉圆环圆心位置变化量(圆心位移量)和成像物镜焦距,实现反射镜微小偏转角度的测量。采用相对测量原理,构建了基于圆心位移量不确定度分量和成像物镜焦距不确定度分量的微小角度测量不确定度评定模型。选取2 mm间隔的F-P标准具进行微小角度的测量实验研究,并进行了数据处理。实验结果表明,在600″微小角度测量范围内,测量不确定度不大于0.132″;在40″微小角度测量范围内,测量不确定度不大于0.045″。该方法可为具有自校准特性的、更
提出了一种基于模糊成像机理的QR码图像快速盲复原方法。在对模糊成像弥散光斑质心不变性研究的基础上,设计圆形寻像图形,在成像模糊时能通过连通域等方法快速检测到图形质心以及QR码符号位置,再结合阶跃边缘特性、梯度强度特性、边缘检测技术以及光学成像机理快速准确估计出模糊QR码图像离焦半径大小,应用维纳滤波算法快速且有效复原QR码图像。与对比算法相比,本文算法在结构相似性和峰值信噪比上都有提升,特别是在复
为进一步拓展微纳米周期超结构功能特性,满足光学周期超结构高精度设计需求,基于时域多分辨分析方法,从Maxwell方程出发,推导出微纳米三维半球光学周期结构表面散射耦合场,计算结果与时域有限差分方法结果吻合良好。给出微纳米三维半球光学周期结构表面场分布并数值计算微纳米三维半球光学周期结构表面微分散射截面,提炼分析填充材质、半球尺寸、半球间距等参量对光学周期结构表面散射场影响规律。结果表明:P偏振下电场分布更能突出周期结构表面结构单元轮廓;散射场值随入射角变大,在对应镜面散射角方向逐渐减小;在半径和波长值相当
为解决VO2热致变色薄膜可见光透射率低、耐候性差以及热分解法制备VO2纳米颗粒易团聚等问题,提出了一种基于VO2@SiO2核壳纳米粒子的热致变色薄膜。首先利用VO(OH)2表面负电荷和γ-氨丙基三乙氧基硅烷中氨基正电荷间的静电相互作用,在前驱体VO(OH)2表面进行SiO2包覆得到VO(OH)2@SiO2核壳纳
为解决基于热阴极的传统X射线管灯丝发射结构脆弱、能量效率低以及散热等问题,设计了一种新型光控脉冲X射线管装置。通过光电阴极与光源的参数匹配,选择蓝光波段量子效率高的S20阴极与波长为460 nm的LED光源。模拟计算确定X射线管整体结构设计。最终实现最大2.37 mA的管电流,光电阴极电子发射效率为0.288 mA/lm,出射X射线能量0~25 keV可调。另外,基于光控脉冲X射线管出射X射线强度易调制的特性,进行不同频率加载信号还原实验和任意X射线轮廓还原实验。
大气温度作为大气探测领域的基本参数,获得高精度大气温度廓线对于天气预报和气候研究至关重要。本文利用自行研制的偏振高光谱激光雷达实现了边界层内大气温度的全天时、高信噪比测量,提出了利用拼接法进行高光谱激光雷达和微波辐射计的数据拼接和融合,实现了二者的优势互补。结果表明:偏振高光谱激光雷达可实现3.5 km以下的大气温度有效探测,其误差主要在±2 K内,微波辐射计在3 km以内探测误差较低,而在3 km以上误差在-4 K~-2 K,经过拼接后,在3.5 km以内误差为±1 K,相关性由拼接前的0.95提升到0
激光清洗过程监控是准确去除金属锈蚀层、有效避免金属基体损伤的关键。利用图像处理技术研究了30 mm×30 mm较大面积Q235B钢板在不同光斑搭接率下的清洗次数与清洗度的变化规律,得到50%的最佳光斑搭接率。利用激光诱导等离子体光谱研究了0.47 mm×0.47 mm微小面积Q235B钢板的皮尔逊相关系数随清洗次数的变化趋势,得到了不同厚度锈蚀层下的最佳清洗次数。在此基础上,将图像处理法与LIPS
光声池作为光声光谱气体检测系统中的核心器件直接影响系统的检测精度,以经典圆柱形光声池为基础研究对象,利用有限元分析软件,结合压力声学及热粘性声学两种物理场对光声池内的声热耦合过程进行建模,通过仿真对比谐振腔和缓冲腔的几何参数变化对光声池性能的影响,进而确定其最优尺寸。仿真结果表明:谐振腔、缓冲腔的长度和半径均会影响谐振频率和声压。充分考虑对比结果及工业制造难度后,选定谐振腔最佳长度为120 mm,最优半径为3 mm,缓冲腔半径为35 mm。在此基础上,设计了一种谐振腔与缓冲腔为圆角连接的光声池,与同尺寸直
提出一种细尺寸、大孔径、高增益的弱反射光纤光栅水听器拖曳线列阵。根据匹配干涉方法选用反射率一致、中心波长相同以及3 dB带宽较宽的弱反射光纤光栅阵列;根据水声传感原理确定弱反射光纤光栅阵列的栅距以应用于5~10 Hz甚低频水声信号探测。采用光纤涂覆机对弱反射光纤光栅阵列二次涂覆,阵列中心波长整体一致漂移,栅距基本不变。采用扎纱机和护套机在二次涂覆弱反射光纤光栅阵列外铺设凯夫拉纤维和聚氨酯保护套形成水听器拖曳线列阵。测试拖曳线列阵水听器单元的声压-相位灵敏度在1 rad/μPa条件下分别为−136.97 d